Муниципальное общеобразовательное учреждение «Пехлецкая средняя школа им. В.В. Соловова»

ПРИНЯТА
Педагогическим советом
МОУ «Пехлецкая средняя
школа имени В.В. Соловова»
Протокол от «30 » января 2024 г. № 5

УТВЕРЖДЕНА
Директором
МОУ «Пехлецкая средняя
школа имени В.В. Соловова»
Н.И. Сорокиной У
Приказ от «30» января 2024 г. № 3 о/п

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«Робототехника для дошкольников»

Возраст детей: 6-7 лет Срок реализации: 4 месяца

> Составитель: Шаповалов А.В. педагог дополнительного образовани

Раздел 1. Комплекс основных характеристик программы

1.1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Робототехника для дошкольников» разработана в соответствии с нормативными документами:

- Федеральным законом от 29 декабря 2012 года №273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- Концепцией развития дополнительного образования детей (утвержденной распоряжением Правительства Российской Федерации от 31 марта 2022 г. № 678-р);
- Приказом Министерства просвещения России от 27 июля 2022г. №629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- -Постановлением Главного государственного санитарного врача Российской Федерации от 28 сентября 2020 г. № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;

-Постановлением Главного государственного санитарного врача Российской Федерации от 28 января 2021г. №2 «Об утверждении санитарных правил и норма СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (раздел VI «Гигиенические нормативы по устройству, содержанию и режиму работы организаций воспитания и обучения, отдыха и оздоровления детей и молодежи»); - Письмом Министерства образования и науки Российской Федерации от 18.11.2015 г. №09-3242 «Методические рекомендации по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)».

Актуальность состоит в том, что робототехника представляет детям технологии 21 века, способствует развитию их коммуникативных способностей, развивает навыки взаимодействия, самостоятельности при принятии решений, раскрывает их творческий потенциал. программа даст возможность закрепить и применить на практике полученные знания по таким дисциплинам, как математика, информатика, технология. На занятиях по техническому творчеству учащиеся соприкасаются со смежными образовательными областями. За счет использования запаса технических понятий и специальных терминов расширяются коммуникативные функции языка, углубляются возможности лингвистического развития обучающегося. Данная программа позволяет создать уникальную образовательную среду, которая способствует развитию инженерного, конструкторского мышления. В процессе работы с LEGO ученики приобретают опыт решения как типовых, так и нешаблонных задач по конструированию, программированию, сбору данных. Кроме того, работа в команде способствует формированию умения взаимодействовать в команде, формулировать, анализировать, критически оценивать, отстаивать свои идеи.

Педагогическая целесообразность

Дети лучше понимают, когда они что-либо самостоятельно создают или изобретают. При проведении занятий по робототехнике этот факт не просто учитывается, а реально используется

на каждом занятии. Уникальность образовательной робототехники заключается в возможности объединить конструирование, 3D-моделирование, электронику и программирование в одном курсе. Техническое творчество - это эффективный инструмент синтеза знаний, закладывающий прочные основы системного мышления и практического применения данных знаний. Содержание и структура данного курса «Робототехника для дошкольников» направлены на формирование устойчивых представлений о робототехнике, устройствах как едином продукте определенного функционального назначения и с определенными техническими характеристиками.

Отличительные особенности программы

В настоящее время робототехника очень востребована во всех странах мира. Образовательная робототехника используется в учебных заведениях, в том числе и в дошкольных учреждениях, в образовательных целях, где с помощью конструкторов или робототехнических наборов дети изучают конструирование, моделирование ΦΓΟС программирование роботов. Новые требуют освоения основ исследовательской деятельности, и программы по робототехнике полностью удовлетворяют эти требования.

Образовательные конструкторы LEGO представляют собой новую, отвечающую требованиям современного ребенка "игрушку". Причем, в процессе игры и обучения дошкольники собирают своими руками игрушки, представляющие собой предметы, механизмы из окружающего их мира. Таким образом, ребята знакомятся с техникой, открывают тайны механики, прививают соответствующие навыки, учатся работать, иными словами, получают основу для будущих знаний, развивают способность находить оптимальное решение, что несомненно пригодится им в течении всей будущей жизни.

Использование LEGO в дополнительном образовании повышает мотивацию дошкольников к обучению. Занятия опираются на естественный интерес к разработке и постройке различных механизмов. Одновременно занятия ЛЕГО как нельзя лучше подходят для первоначального знакомства с компьютерными технологиями в дошкольном возрасте.

Адресат программы

Программа рассчитана на учащихся 6-7 лет, особенностью которых является активное

общение в группах, сотрудничество, познавательная активность.

Вид программы по уровню освоения: базовый (или начальный)

Объем, срок освоения программы

Программа «Робототехника для дошкольников» рассчитана на 4 месяца обучения, общее

количество – 16 часов, количество часов в неделю - 1 час,.

Форма обучения: очная

Режим занятий

Занятия проводятся 1 раз в неделю по 1 часу (1 академический час -30 минут)

Формы организации образовательного процесса и виды занятий

Формы занятий: индивидуальные, работа в паре, групповые.

Курс носит сугубо практический характер, поэтому центральное место в программе

занимают практические умения и навыки работы на планшете и с конструктором. Изучение

каждой темы предполагает выполнение небольших проектных (сборка и

программирование своих моделей). Обучение с LEGO всегда состоит из 4 этапов:

- Установление взаимосвязей

Конструирование,

- Рефлексия,

Развитие.

Основные виды деятельности

групповые учебно-практические и теоретические занятия;

работа по индивидуальным планам (исследовательские проекты);

участие в соревнованиях между группами;

комбинированные занятия;

поиск, преобразование, хранение и применение информации для решения различных задач;

использование программ для решения образовательных и практических задач;

Формы проведения занятий или виды занятий:

практическое занятие;

занятие с творческим заданием;

занятие – мастерская;

занятие - соревнование;

- защита проекта

1.2. Цель и задачи программы

Цель: формирование и развитие творческих и познавательных способностей дошкольников, инженерной компетенции, средствами робототехники и современных компьютерных технологий.

Задачи:

Образовательные:

- сформировать представления о робототехнике;
- познакомить с основами конструирования;
- познакомить с основами программирования;
- познакомить с основами электроники;
- познакомить с основами 3D-моделирования;
- научить правильному обращению с инструментами при работе.

Развивающие:

- развить конструкторские навыки;
- развить умения конструировать;
- развить умение пользоваться ручным и измерительным инструментом;
- развивать такие умения как: исследовать, взаимодействовать, расставлять приоритеты в работе.
- развивать память, логическое мышление и пространственное воображение;
- сформировать умение самостоятельно решать технические задачи в процессе работы над проектом;
- развить самостоятельность и ответственность в выполняемой работе творческих проектов;
- развивать информационную компетентность, навыки работы с различными источниками информации;
- стимулировать находчивость, изобретательность и поисковую творческую деятельность дошкольников, и ориентирование на решение интересных и практически важных задач.

Воспитательные:

- воспитывать интерес к техническому виду творчества;

- воспитывать коммуникативные навыки сотрудничества в коллективе, малой группе, участия в беседе, обсуждении;
- воспитывать чувство личной ответственности;
- воспитывать трудолюбие, самостоятельность, ответственность, умение доводить начатое дело до конца.

1.3. Содержание программы. Учебный план

NG.		Количество часов		
№	Содержание темы	Всего	Теория	Практика
1	Общие представления о робототехнике. Образовательный конструктор LEGO	1		
2	Основы конструирования машин и механизмов	2		
3	Системы передвижения роботов	5		
4	Сенсорные системы	2		
5	Манипуляционные системы			
		1		
6	Разработка проекта	5		
	Всего:	16		

Содержание учебного плана

<u>1.</u> Общие представления о робототехнике – 1 ч.

Основные понятия робототехники. История робототехники. Общие представления об образовательном конструкторе LEGO. Общие представления о программном обеспечении. Практические работы:

- 1. Конструирование робота по технологической карте LEGO.
- 2. Программирование робота с помощью элементарных команд.
- 3. Знакомство с интерфейсом программного обеспечения.

2. Основы конструирования машин и механизмов – 2 ч.

Машины и механизмы. Кинематические схемы механизмов. Механизмы для преобразования движения (зубчато-реечный, винтовой, кривошипный, кулисный, кулачковый). Общие представления о механических передачах. Зубчатые передачи (цилиндрические, конические, червячная). Цепные, ременные, фрикционные передачи. Двигатели постоянного тока.

Практические работы:

- 1. Способы соединения деталей конструктора LEGO.
- 2. Создание механизмов для преобразования движения: зубчато-реечный, винтовой, кривошипный, кулисный, кулачковый.
- 3. Создание моделей, использующих зубчатые (цилиндрические, конические, червячная), цепные, ременные, фрикционные передачи.
- 4. Создание моделей, использующих двигатели постоянного тока.
- 5. Создание цилиндрических, коническо-цилиндрических, червячных конических, редукторов.

3. Системы передвижения роботов – 5 ч.

Потребности мобильных роботов. Типы мобильности. Колесные системы передвижения роботов: автомобильная группа, группа с произвольным независимым поворотом каждого колеса влево и вправо. Шагающие системы передвижения роботов.

Практические работы:

- 1. Конструирование и программирование робота автомобильной группы.
- 2. Конструирование и программирование робота с произвольным независимым поворотом каждого колеса влево и вправо
- 3. Конструирование и программирование робота с 2-я конечностями.

4. Сенсорные системы – 2 ч.

Общее представление о контроллере LEGO. Тактильный датчик. Датчик наклона.

Система с использованием нескольких датчиков.

Практические работы:

- 1. Использование датчика касания для преодоления препятствий робота.
- 2. Действия робота на звуковые сигналы.
- 3. Остановка при препятствии роботом при использовании датчика.
- 4. Управление роботом через Bluetooth.
- 5. Манипуляционные системы 1 ч.

Структура и составные элементы промышленного робота. Рабочие органы манипуляторов.

Сенсорные устройства, применяемые в различных технологических операциях.

Практические работы:

1. Конструирование и программирование органа манипулятора с датчиком касания.

<u>6.</u> Разработка проекта – 5 ч.

Требования к проекту. Определение и утверждение тематики проектов. Обсуждение возможных источников информации. Алгоритм подготовки выступления.

Практические работы:

- 1. Разработка плана выполнения проектной работы: формулирование цели проекта, составление графика работы над проектом.
- 2. Моделирование объекта.
- 3. Конструирование модели.
- 4. Программирование модели.
- 5. Оформление проекта.
- 6. Защита проекта.
- 7. Рефлексия идей технического моделирования посредством конструктора LEGO более сложных моделей.

Планируемые результаты

<u>Предметными результатами</u> обучения робототехнике являются:

- умение использовать термины области «Робототехника»;
- умение конструировать механизмы для преобразования движения;

- умение конструировать модели, использующие механические передачи, редукторы;
- умение конструировать мобильных роботов, используя различные системы передвижения; умение программировать контролер;
- умение конструировать модели промышленных роботов с различными геометрическими конфигурациями; умение составлять линейные алгоритмы управления исполнителями;
- умение использовать логические значения, операции и выражения с ними; умение формально выполнять алгоритмы, описанные с использованием конструкций ветвления (условные операторы) и повторения (циклы), вспомогательных алгоритмов, простых и табличных величин; умение создавать и выполнять программы для решения несложных алгоритмических задач;
- умение использовать готовые прикладные компьютерные программы и сервисы в выбранной специализации;
- навыки выбора способа представления данных в зависимости от постановленной задачи;
- рациональное использование технологической информации для проектирования и создания роботов и робототехнических систем;
- владение алгоритмами и методами решения организационных и технических задач;
- планирование технологического процесса в процессе создания роботов и робототехнических систем.

<u>Личностными результатами</u> обучения робототехнике являются:

- формирование познавательных интересов, интеллектуальных и творческих способностей дошкольников;
- формирование целостного мировоззрения, соответствующего современному уровню развития науки и технологий;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- проявление технико-технологического мышления при организации своей деятельности;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, преподавателю, авторам открытий и изобретений, результатам обучения;

формирование коммуникативной компетентности в процессе проектной, учебно-исследовательской, игровой деятельности.

<u>Метапредметными результатами</u> являются:

- овладение составляющими исследовательской и проектной деятельности: умения видеть проблему, ставить вопросы, выдвигать гипотезы, давать определения понятиям, классифицировать, наблюдать, проводить эксперименты, делать выводы и заключения, структурировать материал, объяснять, доказывать, защищать свои идеи;
- умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в обучении и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- овладение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли, способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию;
- комбинирование известных алгоритмов технического и технологического творчества в ситуациях, не предполагающих стандартного применения одного из них;
- поиск новых решений возникшей технической или организационной проблемы;
- самостоятельная организация и выполнение различных творческих работ по созданию технических изделий;
- виртуальное и натурное моделирование технических объектов и технологических процессов;
- проявление инновационного подхода к решению учебных и практических задач в процессе моделирования изделия или технологического процесса;
- выявление потребностей, проектирование и создание объектов, имеющих потребительную стоимость;
- формирование и развитие компетентности в области использования информационнокоммуникационных технологий.

Раздел 2.Комплекс организационно-педагогических условий.

2.1. Календарный учебный график на 2024 учебный год

Период учебного года	подготовительная группа		
Начало учебного года	01 февраля 2024 года		
Продолжительность учебного года	16 недель		
Продолжительность учебной недели	5 дней		
Сроки проведения промежуточной аттестации		май	
Продолжительность занятий	февраль-май по 30 мин		
Окончание учебного года	май 2024 года	30 мин.	30 мин.

2.2. Условия реализации программы

Образовательная организация предоставляет необходимое оборудование и программное обеспечение, которое эксплуатируется в течении года. Реализация задач будет способствовать дальнейшему формированию взгляда дошкольников на мир, раскрытию роли информационных технологий в формировании естественнонаучной картины мира, развитию мышления, в том числе формированию алгоритмического стиля мышления, подготовке дошкольников к жизни в информационном обществе.

Материально-техническое обеспечение курса.

- 1. Наборы Лего конструктор.
- 2. Программное обеспечение.
- 3. Руководство пользователя.
- 4. Компьютер.
- 5. Проектор
- 6. Принтер.
- 7. Интерактивное учебное пособие:
- 8. http://www.legoeducation.info/nxt/resources/buildingguides/; http://www.legoengineering.com/

Кадровое обеспечение:

По программе может работать педагог дополнительного образования.

2.3. Формы аттестации/ контроля

- 1. Текущий контроль
- 2. Промежуточная аттестация в конце учебного года. Формой промежуточной аттестации по итогам усвоения курса является демонстрация модели, как результата работы над проектом..

При оценивании итогового проекта следует обращать внимание на такие элементы проекта, как:

- техническую сложность;
- практическую значимость проекта.
 - Помимо собственно проекта следует оценивать умения групповой работы. Умение организовывать работу в группе следует оценивать по:
- наличию и функциональности разделения обязанностей;
- информированности группы о результатах работы;
- вкладу каждого члена группы.

Оценочные материалы.

Предметом диагностики и контроля являются внешние образовательные продукты обучающихся (созданные роботы), а также их внутренние личностные качества (освоенные способы деятельности, знания, умения), которые относятся к целям и задачам программы. Основой для оценивания деятельности дошкольников являются результаты анализа его продукции и деятельности по ее созданию. Оценка имеет различные способы выражения устные суждения педагога, письменные качественные характеристики. Оценке подлежит в первую очередь уровень достижения учащимися минимально необходимых результатов, обозначенных в целях и задачах программы. Ребенок выступает полноправным субъектом оценивания. Одна из задач педагога — обучение детей навыкам самооценки. С этой целью педагог выделяет и поясняет критерии оценки, учит детей формулировать эти критерии в зависимости от поставленных целей и особенностей образовательного продукта.

Проверка достигаемых дошкольниками образовательных результатов производится в следующих формах:

- текущая диагностика и оценка педагогом деятельности дошкольников: текущий контроль осуществляется по результатам выполнения практических заданий, мини-проектов. При

этом тематические соревнования роботов также являются методом проверки; взаимооценка детьми работ друг друга или работ, выполненных в группах; публичная защита выполненных дошкольниками творческих работ (индивидуальных и групповых);

- итоговый контроль осуществляется по итогам выполнения творческого проекта, требующего проявить знания и навыки по ключевым темам.

Качество ученических образовательных продуктов. оценивается следующими критериями:

- по соответствию теме проекта;
- по оригинальности и сложности решения практической задачи;
- по практической значимости робота;
- по оригинальности и четкости представления информации в презентации проекта.

Выполненные дошкольниками работы включаются в их «коллекцию достижений» (в виде фотографий, видеозаписей, презентаций). Итоговый контроль проводится в конце каждого года обучения. Он имеет форму защиты проектной работы. Данный тип контроля предполагает комплексную проверку образовательных результатов по всем заявленным целям и задачам программы.

2.4. Методические материалы

- электронные учебники;
- экранные видео лекции, Screencast (экранное видео записываются скриншоты (статические кадры экрана) в динамике);
- видео ролики;
- информационные материалы на сайте, посвященном данной дополнительной образовательной программе.

2.5. Список литературы.

Литература для педагога.

Программа «Робототехника» как базовый образовательный модуль центров технического творчества для детей и молодежи на базе социально ориентированных НКО. – Автономная некоммерческая организация «Научно-методический центр «Школа нового поколения». – 2013.

2. Первый шаг в робототехнику: практикум для 5-6 классов / Д.Г. Копосов. — М.: БИНОМ.

Лаборатория знаний, 2012.

- 3. Филиппов С.А. «Робототехника для детей и родителей» Спб.: Наука, 2013.
- 4. Индустрия развлечений: Перворобот. Книга для учителя и сборник проектов. Институт новых технологий.

Национальный открытый университет «ИНТУИТ», 2014.

- 5. http://www.nxtprograms.com/ инструкции по сборке роботов.
- 6. $\frac{\Phi \Gamma OC \mu \Gamma \rho a. p \Phi}{\Phi}$ Образовательная робототехника, техническое творчество, $\Phi \Gamma OC$.
- 7. http://wiki.tgl.net.ru/index.php/Образовательная робототехника 11.
- 8. http://www.rostovrobot.ru/ секция «Робототехника».
- 9. http://robotor.ru блог о роботах.
- 10. http://www.roboclub.ru/ Робоклуб. Практическая роботехника.
- 11. http://legoclab.pbwiki.com/ Клуб Лего педагогов.
- 12. http://www.robosport.ru/ сайт «Робототехника».
- 13. http://www.lego.com/education/ Продукция Lego Education.
- 14. http://www.wroboto.org/ Международные состязания роботов.
- 15. http://russianrobofest.ru/ Всероссийский робототехнический фестиваль
- 16. http://www.int-edu.ru/- Институт новых технологий.

Приложение

Календарно-учебный график.

<i>№</i>	Содержание темы	Часы
1.	Общие представления о робототехнике	1
	Основные понятия робототехники. История робототехники	1
2.	Основы конструирования машин и механизмов	2
	Способы соединения деталей конструктора LEGO	1
	Механизмы для преобразования движения (зубчато-реечный, винтовой, кривошипный, кулисный, кулачковый)	1
3.	Системы передвижения роботов	5
	Потребности мобильных роботов. Типы мобильности	1
	Общее представление о контроллере. Робототехнический контроллер	1
	Воспроизведение звукового файла или какого-либо одиночного звука контроллером	1
	Управление роботом через Bluetooth	2
4.	Сенсорные системы	2

	1
	1
Датчик наклона	1
Манипуляционные системы	1
Сенсорные устройства, применяемые в различных технологических операциях	1
Разработка проекта	6
Определение и утверждение тематики проектов. Подбор и анализ материалов о модели проекта	1
Моделирование объекта	1
Конструирование модели	1
Программирование модели	1
Оформление проекта. Защита проекта. Промежуточная аттестация.	1
Всего:	16
	Манипуляционные системы Сенсорные устройства, применяемые в различных технологических операциях Разработка проекта Определение и утверждение тематики проектов. Подбор и анализ материалов о модели проекта Моделирование объекта Конструирование модели Программирование модели Оформление проекта. Защита проекта. Промежуточная аттестация.